ЛАБОРАТОРНОЕ ЗАНЯТИЕ №6
РАБОТА 3
Быстрое преобразование Фурье (FFT)

ЦЕЛЬ РАБОТЫ
– Изучить назначение и принцип быстрого преобразования Фурье
– Освоить вычисление FFT в среде Python
– Сравнить ДПФ и FFT по вычислительной эффективности
– Исследовать влияние параметров сигнала на спектр
– Научиться анализировать спектр реальных сигналов

ОБРАЗНОЕ ВВЕДЕНИЕ
Дискретное преобразование Фурье можно сравнить с перебором всех возможных комбинаций.
FFT — это умный алгоритм, который разбивает задачу на части и решает её в разы быстрее.
Если ДПФ — это идти пешком,
то FFT — это ехать на скоростном поезде 🚄.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Быстрое преобразование Фурье (Fast Fourier Transform, FFT) — это эффективный алгоритм вычисления ДПФ, снижающий вычислительную сложность с O(N²) до O(N·log₂N).
Основные идеи FFT:
– разложение сигнала на чётные и нечётные отсчёты
– рекурсивная структура
– наиболее эффективно при N = 2ᵏ
FFT широко применяется в:
– цифровой связи
– радиолокации
– обработке изображений
– аудио- и видеосистемах

ПРАКТИЧЕСКАЯ ЧАСТЬ
Задание 1. Подготовка среды
import numpy as np
import matplotlib.pyplot as plt
import time

Задание 2. Формирование тестового сигнала
Создадим сигнал с несколькими гармониками.
fs = 1000
t = np.arange(0, 1, 1/fs)
x = np.sin(2 * np.pi * 50 * t)
x = x + 0.7 * np.sin(2 * np.pi * 120 * t)
x = x + 0.3 * np.sin(2 * np.pi * 300 * t)
plt.plot(t[:200], x[:200])
plt.xlabel("Время, с")
plt.ylabel("Амплитуда")
plt.title("Фрагмент сигнала во временной области")
plt.grid()
plt.show()

Задание 3. Вычисление FFT
N = len(x)
X = np.fft.fft(x)
freq = np.fft.fftfreq(N, 1/fs)

Задание 4. Амплитудный спектр
ampl = np.abs(X) / N
plt.stem(freq[:N//2], ampl[:N//2])
plt.xlabel("Частота, Гц")
plt.ylabel("Амплитуда")
plt.title("Амплитудный спектр (FFT)")
plt.grid()
plt.show()

Задание 5. Фазовый спектр
phase = np.angle(X)
plt.stem(freq[:N//2], phase[:N//2])
plt.xlabel("Частота, Гц")
plt.ylabel("Фаза, рад")
plt.title("Фазовый спектр (FFT)")
plt.grid()
plt.show()

Задание 6. Сравнение времени ДПФ и FFT
Определим простейшую реализацию ДПФ.
def dft(x):
N = len(x)
X = np.zeros(N, dtype=complex)
for k in range(N):
for n in range(N):
X[k] += x[n] * np.exp(-2j * np.pi * k * n / N)
return X
Измерение времени:
N_test = 256
x_test = np.random.rand(N_test)
start = time.time()
X_dft = dft(x_test)
time_dft = time.time() - start
start = time.time()
X_fft = np.fft.fft(x_test)
time_fft = time.time() - start
print("Время ДПФ:", time_dft, "сек")
print("Время FFT:", time_fft, "сек")

Задание 7. Влияние длины сигнала (степени двойки)
N1 = 1024
N2 = 1000
x1 = np.random.rand(N1)
x2 = np.random.rand(N2)
t1 = time.time()
np.fft.fft(x1)
t1 = time.time() - t1
t2 = time.time()
np.fft.fft(x2)
t2 = time.time() - t2
print("FFT при N = 1024:", t1, "сек")
print("FFT при N = 1000:", t2, "сек")

АНАЛИЗ РЕЗУЛЬТАТОВ
FFT позволяет получить спектр сигнала значительно быстрее по сравнению с прямым вычислением ДПФ. Алгоритм особенно эффективен при длине сигнала, равной степени двойки. Амплитудный и фазовый спектры позволяют выявить частотный состав сложных сигналов.

КОНТРОЛЬНЫЕ ВОПРОСЫ
1. В чём отличие FFT от ДПФ?
2. Почему FFT работает быстрее?
3. Почему желательно выбирать N = 2ᵏ?
4. Где на практике используется FFT?
5. Что показывает фазовый спектр?

